
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE - 18 – JUNE , 2017 ISSN: 2320-1363

 1

Activity and Behavior Analytics of Big Data Hadoop

Framework by Using the ML tensor sketch

Ram Narayan Dash

Abstract

Time and technology has its own role model with respect to the innovation. Technology

and its model view to made things simpler for the end user; where the client need the pattern of

the activity related to its domain. Information of extreme size diversity and complexity – is

everywhere. System identification refers to the process of learning a state representation and

dynamics of a dynamical system solely from observation (and action) sequences. Accurate

system identification is important for tracking the state of the system, predicting future

observations and planning control actions. In this work we care mainly about the problem of

state tracking or filtering—that is, maintaining a belief about the state of the system given the

history. This disruptive phenomenon is destined to help organizations drive innovation by

gaining new and faster insight into their customers. Hence, in this paper we try to put the

glimpse of the big data search mechanism in order to use the stochastic automata to see the graph

or in other from which may be relevant to the client. In this aspect we have used the parallel

computing the logs which already mined and transaction data in various domains in order to give

a statistical data to the end user. It can be used in both the way of prevention is better than care in

order to make the things smarter and better way. In this paper we have considered both the

automata theory to implement the stochastic automata using Hadoop giving raise the concept of

efficiency, robustness and accuracy.

Index Terms—Activity detection, Data Lake, temporal stochastic automata, Hadoop,

Distributed computing, Hadoop, Distributed file system, Tensor Sketch, Machine learning

1. Introduction

Hadoop promises shorter execution

times or the ability to process greater

quantities of data compared to sequential

computation. However, in practice it is hard

to realize a parallel implementation that

comes close to achieving its theoretical

potential. This is because efficient

cooperation between processors is difficult

to implement. Parallelism introduces a new

set of concerns for the programmer: the

scheduling of computations; placement of

data; synchronization; and communication

between processors. This adds greatly to the

complexity to the programming task. An

implementation must manage all these

concerns in addition to computing a result.

A skillful programmer can produce efficient

implementations in such languages.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE - 18 – JUNE , 2017 ISSN: 2320-1363

 2

However they are hard to use effectively;

furthermore the code produced is often

unclear, brittle and machine-specific.

Fig.1.1. Illustration of the Parallel

Computing

 The weakness of these two approaches is

that they present a single fixed level of

abstraction. Implementing parallel

algorithms is more complicated than

implementing their sequential counterparts,

while at the same time the efficiency of the

implementation is very important. This

suggests a programming model that

combines the benefits of both approaches:

one that abstracts away from the complexity

while still permitting fine control when

necessary.

2. Related Work

When performance of the support software

is suboptimal the programmer will have

difficulty in correcting the problem.

Although a programmer may have the skill

to produce a higher quality implementation,

the abstractions of the parallel programming

model may prevent them from doing so. It is

sometimes possible to subvert abstractions

when needed. However such work-around –

dirty hacks result in the programmer fighting

against the very feature that was intended to

make the programming task simpler. Such

work-around also diminishes the other

benefits of programming with abstractions –

such as transparency, safety, and portability.

Fig.2.1. Model of the Sketch for the Data

Process

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE - 18 – JUNE , 2017 ISSN: 2320-1363

 3

The success of a parallel implementation can

be assessed by a single measure: compare

the runtime to that of an optimized

sequential implementation. Because parallel

processing is solely motivated by

performance, it is often unacceptable to

delegate implementation decisions to

supporting software that may produce sub-

optimal results. Instead the programmer may

favor a programming model that provides

the low-level control necessary to produce

the best result. This is even though a

programming model with few abstractions

may make the programming task more

difficult, the code harder to reason about and

verify, and the resulting implementation

harder to debug and maintain.

3. Methodology

Parallel programming languages and

methodologies typically attempt to assist the

programmer in one of two ways. The first

approach is to provide layers of abstraction

that hide the low-level details of the parallel

machine from the user. This simplifies the

programming task but reduces control over

the finer details of the parallel

implementation. Other languages provide as

little abstraction as possible and require the

parallelization concerns to be managed

explicitly. Parallel machine architectures

divide into two broad classes – shared

memory systems and distributed memory

systems. Shared memory machines are

characterized by a set of processors that all

have direct access to a common memory

store, through which they may

communicate. Filtering: The purpose of

filtering is to a maintain and update a belief

state qt ≡ Pr(st | o1:t−1). 6 The belief state

stores all information about the history that

is needed to make future predictions. It

represents both our knowledge and our

uncertainty about the true state of the system

at time t given previous observations.

Prediction: In the prediction task, we aim to

predict observation ot+τ given o1:t−1 for

some τ ≥ 0. Smoothing: In the smoothing

task, we compute a belief state at time t

given previous as well as future

observations— that is, we compute a

representation of Pr(st | o1:t+τ). Sampling:

We might be interested in generating

observation sequences based on the

dynamical system model. Likelihood

Evaluation: We might also be interested in

evaluation of the likelihood of a sequence of

observations Pr(o1:t). In this work, we focus

primarily on filtering. An accurate filter can

provide input to other downstream tasks. For

example, given a filter for maintaining the

belief state qt we can use standard

regression to learn a model to predict ot+τ

given qt . We can also learn a probabilistic

model to compute Pr(ot | qt), thus allowing

us to perform sampling and likelihood

evaluation. Maintaining qt is usually

accomplished through a recursive filter that

takes the form

 Distributed memory machines are

comprised of a set of nodes interconnected

by a network. Each node is a processor with

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE - 18 – JUNE , 2017 ISSN: 2320-1363

 4

its own local memory. Data is exchanged

between nodes by exchanging messages

across the network. Writing programs for

distributed memory machines is

considerably more difficult than

implementing a similar shared memory

program. Communication is via message

passing, which introduces concurrency and

possibly non-determinacy: in particular

deadlock and race conditions are all

possible. No determinacy greatly confuses

reasoning about program behavior. The

characteristics of the interconnection

network – its latency and bandwidth – must

also be considered. Failure to do so may

cause processors that are waiting for a

message to block excessively or the network

to become saturated. The methodology is

composed of a series of n stages, each of

which has an associated language L1; : : : ;

Ln. Language L1 allows the expression of

computations: all parallelization details are

left unspecified. Each of the following

languages in the series Li ; i = 2; : : : ; n

extends the previous language Li 1 with

constructs that make explicit the

implementation decisions of an additional

parallelization concern.

Fig.3.1. Architecture Design of stochastic automata of parallel computing of the Model

predction

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE - 18 – JUNE , 2017 ISSN: 2320-1363

 5

 Therefore each language has a lower level

of abstraction than its predecessor in the

series. The process starts by expressing the

computational portion of the algorithm as a

program in language L1. Parallel

implementation details are then

incrementally introduced by rewriting this

program in every language of the series in

turn. Each transformation between stages

only requires the programmer to make

decisions about a single parallelization

concern: the decision is supported by a

language that presents an appropriate level

of abstraction for that concern. The series of

stages provides structure to the derivation.

The introduction of parallel implementation

details is ordered so that the higher-level,

more fundamental decisions are taken before

lesser concerns are tackled. By the time the

program has been rewritten in language Ln

all the parallelization details have been

specified. A conventional implementation

can then be produced with little further

intervention from the programmer. We have

designed and implemented a prototype of an

incremental programming system.

3.1 Evaluation and Analysis

In all but the most embarrassingly

Hadoops, some data will be computed on

one processor and required by another.

Communicating data across a distributed

memory machine is expensive – the network

has significant latency and limited

bandwidth. Therefore parallel algorithms are

designed to minimize the number of data

redistributions required. The aim is to

decompose the problem so that as much as

possible of the data required by a processor

is generated locally or on nearby processors.

Fig.3.1.1. Various Comparison model

result

Another technique is to bundle

together in the same communication

different data that is to be redistributed in

the same way. This may require adjusting

the scheduling so that these results become

available at the same time.

4. Conclusion and Future work

The foundation of our work is a

model class and a learning algorithm for

constructing recursive filters from data in an

unsupervised manner. The framework,

predictive state models, is based on

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE - 18 – JUNE , 2017 ISSN: 2320-1363

 6

representing the belief state of the filter in

terms of observed future statistics, thus

eliminating the need to learn an observation

model. The learning algorithm, two-stage

regression, uses history features to remove

noise from observed future statistics, turning

them into de-noised (expected) states from

which we can learn the dynamics of the

systemMuch research into language design

and programming methodologies has been

concerned with introducing models of

computation that abstract away from the

low-level machine details. Whether it is an

incremental change, such as the introduction

of subroutines or the heap abstraction

provided by C; or an innovation such as the

execution model of Prolog; the aim is the

same to simplify the programming task by

hiding some of the complexity of the

underlying machine. This is achieved by

delegating the management of some of the

implementation concerns to supporting

software in the compiler or runtime system.

As the programmer is released from the

requirement to manage these concerns they

are more able to concentrate on higher-level

problem solving

Reference

[1] G. Palshikar and M. Apte, “Collusion set

detection using graph clustering,” Data

Knowl. Eng., vol. 16, no. 1, pp. 135–164,

2008.

[2] M. Albanese, A. Pugliese, and V. S.

Subrahmanian, “Fast activity detection:

Indexing for temporal stochastic automaton-

based activity models,” IEEE Trans. Knowl.

Data Eng., vol. 25, no. 2, pp. 360–373, Feb.

2013.

[3] M. Albanese, V. Moscato, A. Picariello,

V. S. Subrahmanian, and O. Udrea,

“Detecting stochastically scheduled

activities in video,” in Proc. IJCAI, M. M.

Veloso, Ed. San Francisco, CA, USA,

2007,pp. 1802–1807.

[4] S. Lühr, H. H. Bui, S. Venkatesh, and G.

A. W. West, “Recognition of human activity

through hierarchical stochastic learning,” in

Proc. PerCom., Fort Worth, TX, USA, Mar.

2003, pp. 416–422.

[5] T. Duong, H. Bui, D. Phung, and S.

Venkatesh, “Activity recognition and

abnormality detection with the switching

hidden semi-Markov model,” in Proc. IEEE

CVPR, Washington, DC, USA, 2005.

[6] T. V. Duong, D. Q. Phung, H. H. Bui,

and S. Venkatesh, “Efficient duration and

hierarchical modeling for human activity

recognition,” Artif. Intell., vol. 173, no. 7–8,

pp. 830–856, May 2009.

[7] R. Hamid, Y. Huang, and I. Essa,

“ARGMode activity recognition using

graphical models,” in Proc. IEEE CVPR,

Madison, WI, USA, 2003.

[8] M. Albanese, S. Jajodia, A. Pugliese, and

V. S. Subrahmanian, “Scalable analysis of

attack scenarios,” in Proc. ESORICS,

Leuven, Belgium, 2011, pp. 416–433.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – V – ISSUE - 18 – JUNE , 2017 ISSN: 2320-1363

 7

[9] M. L. Fredman and R. E. Tarjan,

“Fibonacci heaps and their uses in improved

network optimization algorithms,” in Proc.

FOCS, 1984, pp. 338–346.

 [10] A. Guttman, “R-trees: A dynamic

index structure for spatial searching,” in

Proc. SIGMOD Conf., B. Yormark, Ed.

New York, NY, USA, 1984, pp. 47–57.

[11] Y. Manolopoulos, A. Nanopoulos, A.

N. Papadopoulos, and Y. Theodoridis, “R-

trees: Theory and applications,” in

Advanced Information and Knowledge

Processing. Secaucus, NJ, USA: Springer-

Verlag, 2005.

[12] N. Roussopoulos and D. Leifker,

“Direct spatial search on pictorial databases

using packed R-trees,” in Proc. SIGMOD

Conf., S. B. Navathe, Ed., New York, NY,

USA, 1985, pp. 17–31.

[13] D. R. Karger and C. Stein, “A new

approach to the minimum cut problem,” J.

ACM, vol. 43, no. 4, pp. 601–640, 1996.

[14] F. Mörchen, “Unsupervised pattern

mining from symbolic temporal data,”

SIGKDD Explor. Newslett., vol. 9, no. 1,

pp. 41–55, Jun. 2007.

[15] K. Seymore, A. McCallum, and R.

Rosenfeld, “Learning hidden Markov model

structure for information extraction,” in

Proc. AAAI Workshop Machine Learning

for Information Extraction, 1999.

[16] M. Albanese et al., “A constrained

probabilistic petri net framework for human

activity detection in video,” IEEE Trans.

Multimedia, vol. 10, no. 8, pp. 1429–1443,

Dec. 2008.

[17] V. Vu, F. Brémond, and M. Thonnat,

“Automatic video interpretation: A novel

algorithm for temporal scenario

recognition,” in Proc. IJCAI, San Francisco,

CA, USA, Aug. 2003, pp. 1295–1302.

[18] L. Golab and M. T. Özsu, “Issues in

data stream management,” SIGMOD Rec.,

vol. 32, pp. 5–14, Jun. 2003 [Online].

Available:

http://doi.acm.org/10.1145/776985.776986

