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Abstract 

Time and technology has its own role model with respect to the innovation. Technology 

and its model view to made things simpler for the end user; where the client need the pattern of 

the activity related to its domain. Information of extreme size diversity and complexity – is 

everywhere. System identification refers to the process of learning a state representation and 

dynamics of a dynamical system solely from observation (and action) sequences. Accurate 

system identification is important for tracking the state of the system, predicting future 

observations and planning control actions. In this work we care mainly about the problem of 

state tracking or filtering—that is, maintaining a belief about the state of the system given the 

history. This disruptive phenomenon is destined to help organizations drive innovation by 

gaining new and faster insight into their customers.  Hence, in this paper we try to put the 

glimpse of the big data search mechanism in order to use the stochastic automata to see the graph 

or in other from which may be relevant to the client. In this aspect we have used the parallel 

computing the logs which already mined and transaction data in various domains in order to give 

a statistical data to the end user. It can be used in both the way of prevention is better than care in 

order to make the things smarter and better way. In this paper we have considered both the 

automata theory to implement the stochastic automata using Hadoop giving raise the concept of 

efficiency, robustness and accuracy. 

Index Terms—Activity detection, Data Lake, temporal stochastic automata, Hadoop,          

Distributed computing, Hadoop, Distributed file system, Tensor Sketch, Machine learning 

 

1.  Introduction 

Hadoop promises shorter execution 

times or the ability to process greater 

quantities of data compared to sequential 

computation. However, in practice it is hard 

to realize a parallel implementation that 

comes close to achieving its theoretical 

potential. This is because efficient 

cooperation between processors is difficult 

to implement. Parallelism introduces a new 

set of concerns for the programmer: the 

scheduling of computations; placement of 

data; synchronization; and communication 

between processors. This adds greatly to the 

complexity to the programming task. An 

implementation must manage all these 

concerns in addition to computing a result. 

A skillful programmer can produce efficient 

implementations in such languages. 
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However they are hard to use effectively; 

furthermore the code produced is often 

unclear, brittle and machine-specific. 

 

Fig.1.1. Illustration of the Parallel 

Computing 

 The weakness of these two approaches is 

that they present a single fixed level of 

abstraction. Implementing parallel 

algorithms is more complicated than 

implementing their sequential counterparts, 

while at the same time the efficiency of the 

implementation is very important. This 

suggests a programming model that 

combines the benefits of both approaches: 

one that abstracts away from the complexity 

while still permitting fine control when 

necessary. 

2. Related Work 

When performance of the support software 

is suboptimal the programmer will have 

difficulty in correcting the problem. 

Although a programmer may have the skill 

to produce a higher quality implementation, 

the abstractions of the parallel programming 

model may prevent them from doing so. It is 

sometimes possible to subvert abstractions 

when needed. However such work-around – 

dirty hacks result in the programmer fighting 

against the very feature that was intended to 

make the programming task simpler. Such 

work-around also diminishes the other 

benefits of programming with abstractions – 

such as transparency, safety, and portability.  

 

Fig.2.1. Model of the Sketch for the Data 

Process 
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The success of a parallel implementation can 

be assessed by a single measure: compare 

the runtime to that of an optimized 

sequential implementation. Because parallel 

processing is solely motivated by 

performance, it is often unacceptable to 

delegate implementation decisions to 

supporting software that may produce sub-

optimal results. Instead the programmer may 

favor a programming model that provides 

the low-level control necessary to produce 

the best result. This is even though a 

programming model with few abstractions 

may make the programming task more 

difficult, the code harder to reason about and 

verify, and the resulting implementation 

harder to debug and maintain. 

3. Methodology 

Parallel programming languages and 

methodologies typically attempt to assist the 

programmer in one of two ways. The first 

approach is to provide layers of abstraction 

that hide the low-level details of the parallel 

machine from the user. This simplifies the 

programming task but reduces control over 

the finer details of the parallel 

implementation. Other languages provide as 

little abstraction as possible and require the 

parallelization concerns to be managed 

explicitly. Parallel machine architectures 

divide into two broad classes – shared 

memory systems and distributed memory 

systems. Shared memory machines are 

characterized by a set of processors that all 

have direct access to a common memory 

store, through which they may 

communicate. Filtering: The purpose of 

filtering is to a maintain and update a belief 

state qt ≡ Pr(st | o1:t−1). 6 The belief state 

stores all information about the history that 

is needed to make future predictions. It 

represents both our knowledge and our 

uncertainty about the true state of the system 

at time t given previous observations. 

Prediction: In the prediction task, we aim to 

predict observation ot+τ given o1:t−1 for 

some τ ≥ 0. Smoothing: In the smoothing 

task, we compute a belief state at time t 

given previous as well as future 

observations— that is, we compute a 

representation of Pr(st | o1:t+τ ). Sampling: 

We might be interested in generating 

observation sequences based on the 

dynamical system model. Likelihood 

Evaluation: We might also be interested in 

evaluation of the likelihood of a sequence of 

observations Pr(o1:t). In this work, we focus 

primarily on filtering. An accurate filter can 

provide input to other downstream tasks. For 

example, given a filter for maintaining the 

belief state qt we can use standard 

regression to learn a model to predict ot+τ 

given qt . We can also learn a probabilistic 

model to compute Pr(ot | qt), thus allowing 

us to perform sampling and likelihood 

evaluation. Maintaining qt is usually 

accomplished through a recursive filter that 

takes the form 

 Distributed memory machines are 

comprised of a set of nodes interconnected 

by a network. Each node is a processor with 
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its own local memory. Data is exchanged 

between nodes by exchanging messages 

across the network. Writing programs for 

distributed memory machines is 

considerably more difficult than 

implementing a similar shared memory 

program. Communication is via message 

passing, which introduces concurrency and 

possibly non-determinacy: in particular 

deadlock and race conditions are all 

possible. No determinacy greatly confuses 

reasoning about program behavior. The 

characteristics of the interconnection 

network – its latency and bandwidth – must 

also be considered. Failure to do so may 

cause processors that are waiting for a 

message to block excessively or the network 

to become saturated. The methodology is 

composed of a series of n stages, each of 

which has an associated language L1; : : : ; 

Ln. Language L1 allows the expression of 

computations: all parallelization details are 

left unspecified. Each of the following 

languages in the series Li ; i = 2; : : : ; n 

extends the previous language Li 1 with 

constructs that make explicit the 

implementation decisions of an additional 

parallelization concern. 

 

Fig.3.1. Architecture Design of stochastic automata of parallel computing of the Model 

predction 
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 Therefore each language has a lower level 

of abstraction than its predecessor in the 

series. The process starts by expressing the 

computational portion of the algorithm as a 

program in language L1. Parallel 

implementation details are then 

incrementally introduced by rewriting this 

program in every language of the series in 

turn. Each transformation between stages 

only requires the programmer to make 

decisions about a single parallelization 

concern: the decision is supported by a 

language that presents an appropriate level 

of abstraction for that concern. The series of 

stages provides structure to the derivation. 

The introduction of parallel implementation 

details is ordered so that the higher-level, 

more fundamental decisions are taken before 

lesser concerns are tackled. By the time the 

program has been rewritten in language Ln 

all the parallelization details have been 

specified. A conventional implementation 

can then be produced with little further 

intervention from the programmer. We have 

designed and implemented a prototype of an 

incremental programming system. 

3.1 Evaluation and Analysis 

In all but the most embarrassingly 

Hadoops, some data will be computed on 

one processor and required by another. 

Communicating data across a distributed 

memory machine is expensive – the network 

has significant latency and limited 

bandwidth. Therefore parallel algorithms are 

designed to minimize the number of data 

redistributions required. The aim is to 

decompose the problem so that as much as 

possible of the data required by a processor 

is generated locally or on nearby processors. 

 

 

Fig.3.1.1. Various Comparison model 

result   

Another technique is to bundle 

together in the same communication 

different data that is to be redistributed in 

the same way. This may require adjusting 

the scheduling so that these results become 

available at the same time. 

4. Conclusion and Future work 

The foundation of our work is a 

model class and a learning algorithm for 

constructing recursive filters from data in an 

unsupervised manner. The framework, 

predictive state models, is based on 
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representing the belief state of the filter in 

terms of observed future statistics, thus 

eliminating the need to learn an observation 

model. The learning algorithm, two-stage 

regression, uses history features to remove 

noise from observed future statistics, turning 

them into de-noised (expected) states from 

which we can learn the dynamics of the 

systemMuch research into language design 

and programming methodologies has been 

concerned with introducing models of 

computation that abstract away from the 

low-level machine details. Whether it is an 

incremental change, such as the introduction 

of subroutines or the heap abstraction 

provided by C; or an innovation such as the 

execution model of Prolog; the aim is the 

same to simplify the programming task by 

hiding some of the complexity of the 

underlying machine. This is achieved by 

delegating the management of some of the 

implementation concerns to supporting 

software in the compiler or runtime system. 

As the programmer is released from the 

requirement to manage these concerns they 

are more able to concentrate on higher-level 

problem solving 
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